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Land Ice Physics Set 
(Albany/FELIX code)  

Other Albany 
Physics Sets 

The Albany/FELIX First-Order 
Stokes dycore is implemented in a 
Sandia (open-source) parallel C++ 

finite element code called… 

• Solver libraries (linear/nonlinear) 
• Preconditioners 
• Automatic differentiation 
• Discretizations/meshes 
• Many others! 

• Parameter estimation 
• Uncertainty quantification 
• Optimization 
• Bayesian inference 

• Configure/build/test/documentation 

Sandia’s Role in the PISCEES Project: 
The Albany/FELIX Dycore 
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To develop and support a robust and scalable unstructured grid finite element land ice 
dycore based on the “first-order” (FO) Stokes physics → Albany/FELIX dycore 

Use of Trilinos components has enabled the rapid development of the 
Albany/FELIX First Order Stokes dycore (~1.5 FTEs for all of work shown!). 

Started 

by A. 

Salinger 



• Implemented non-linear “first-order Stokes” 
PDEs with Glen’s law viscosity. 

 

• Implemented basal sliding and floating ice BCs. 
  • Performed verification of new code:  

 

• Accuracy and convergence verification on 
MMS problems (right). 

 

• Code-to-code comparisons on canonical ice 
sheet benchmarks (below). 
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Collaborators:  

A. Salinger, M. Perego (SNL);  

    S. Price, W. Lipscomb (LANL) 

Albany/FELIX Glimmer/CISM 

LifeV 
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2012 Recap: Implementation &  
Verification of First-Order Stokes PDEs/BCs 



2012 Recap (continued): Robustness 
& Scalability 

γ=10-1.0 

γ=10-2.5 

γ=10-6.0 γ=10-10 

γ=10-10 

γ=10-10 

• Newton’s method most robust with full step + homotopy continuation of 
𝛾 → 10−10: converges out-of-the-box!  
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Glen’s Law Viscosity:  

𝛾 = regularization 
parameter 
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• Weak scaling for ISMIP-HOM Test C (right). 
 

•  Finite element assembly nearly 
constant.   

• Linear algebra fast but not constant. 

52K DOF  
1 core 

182M DOF  
4096 cores 

Joint work with A. Salinger, 

R. Tuminaro (SNL) 



Albany/FELIX 2012-13 Progress 

2012:  
 

•  Implement first-order Stokes physics and relevant BCs (basal sliding, 
floating ice) in Albany/FELIX code.  

 

• Verify code on MMS and canonical benchmark problems. 
 

• Preliminary performance (robustness and scalability) studies. 
 

2013: 
 

• Import Greenland/Antarctica data (𝛽, temperature,…) into 
Albany/FELIX.  

• Import various mesh formats (structured hex, structured tet, 
unstructured). 

 

• Couple Albany/FELIX to MPAS and CISM codes.  
 

• Do verification and performance studies on Greenland/Antarctica 
problems to mature the code for science runs. 

 

 
• Deterministic inversion for initialization. 
 

• Bayesian calibration for initialization. 

Irina’s talk 
LIWG 2013 

Irina’s talk 
LIWG 2014 
(this talk!) 

Mauro Perego’s talk 
LIWG 2014 
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Data (geometry, topography, surface height, basal traction, temperature, etc.) needs to be 
imported into Albany to run “real” problems (Greenland, Antarctica). 
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We Now Support Several Mesh/Data 
 Input Methods (Full Data)!  

Albany/FELIX, MPAS-
Albany, CISM-Albany 

are up and running on 
Hopper and Titan!  

Unstructured 
Delauney 
Triangle (MPAS) 

Netcdf Data 

CISM 

MPAS 

Exodus Database 

MATLAB/shell  
scripts ASCII Mesh Files 

Interface Code 
Albany/FELIX 

Exodus Database File 

Code 

• Approach 1 for data input: Netcdf file → ASCII file → Albany ASCII Mesh Reader → Albany. 
 

• Approach 2 for data input: Netcdf file → run CISM/MPAS → Albany interface → Albany. 
 

• Approach 3 for data input: Exodus file → Albany.    

Structured Hex (CISM) Structured Tet (MPAS) 

Joint work with A. Salinger, 

M. Perego (SNL) 



CISM-Albany Interface  
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We have set up a twice 
weekly cronjob that pulls 

and builds Trilinos and 
CISM-Albany on Hopper 

(and soon Titan). 

CISM 

MPAS 

CISM (Fortran) 
Time stepping, 

temperature solve 

simple_glide 

glam SIA (FD) 

glam FO (FD) 

glissade FO (FE) 
libdycore code 

*_driver.h 
*.a libraries 

Albany/FELIX (C++) 
velocity solve 

CISM-Albany 
FO (FE) 

code exe dycore 

I. Kalashnikova (SNL); D. 

Ranken, M. Hoffman,  

S. Price (LANL) 

BISICLES (C++) 
velocity solve, time 

stepping, temperature solve 

simple_bisicles 
CISM-BISICLES 

L1L2 (FV) 

• CISM-Albany interface uses libdycore code in CISM (like BISICLES external dycore)→ structured  
• hexahedral grids. 
 

• CISM cmake scripts pull in  required Albany libraries/*.h files (-D ALBANY_FELIX_DYCORE:BOOL=ON). 
 

• Simple_glide executable is created/run (with dycore = 3, external_dycore_type = 2).  
 

• CISM passes to Albany info about geometry, temperature, sliding coefficient, floating condition;  
       Albany returns velocity field.  
 

• Time-stepping, temperature solve done in CISM. 



Structured Hexahedral Grid Results  
(CISM-Albany Interface) 

Surface velocity magnitude 
[m/yr] 

Velocity magnitude [m/yr] 
 in 𝑥-𝑧 planes. (height “𝑧” is 

stretched 100x.) 

1 km resolution 
“new” (9/25/13) 

Greenland dataset  
 

16.6M hex elements 
37M unknowns 

 

constant b, 𝑇 

(no-slip) 

Albany/FELIX converged 
on first attempt out-of-
the-box on this (fine) 

discretization! 
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Data set courtesy of 

M. Norman (ORNL) 



Transient Simulations: CISM-Albany 
Forward Run (Dome) 
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Dome Test Case  
(50 years, Δ𝑡 =  1 years)  

• Just began looking 
at transient 
simulations (time-
stepping) last 
week. 

 

• Upwind time-
integration scheme 
(in CISM).  

 

• Comparison to 
Glissade FO for 
Dome 50 year run. 

Joint work with D. 

Ranken, M. Hoffman, 

S. Price (LANL) 

Time: 50.000000 



Transient Simulations: CISM-Albany 
Forward Run (4 km Greenland) 
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Status: time-stepping runs, but needs further 
testing & code optimization; flow factor passed 

to Albany but is not yet used there. 
Joint work with D. 

Ranken, M. Hoffman, 

S. Price (LANL) 

𝑡 = 0 𝑡 = 5 𝑡 = 70 

70 year 4 km Greenland 
transient simulation using 
CISM-Albany converged on 
Titan out-of-the box! (2048 

cores, 5 hour run) 

• Constant temperature/flow 
factor, no-slip BC at basal 
boundary used for now. 

 

• Δ𝑡 = 0.1 years. 
 

• Smoothing in time due to 
dynamics working on initial 
geometry, which is very rough.  



MPAS-Albany Interface  

MPAS 

MPAS 

MPAS/Land Ice 
(Fortran) 

Time stepping,  
temperature solve (in prep) 

LandIce_model 

MPAS (FV) 
SIA 

LifeV 
L1L2/FO (FE) 

PHG 
Stokes (FE) 

C++/Fortran 
interface 

mesh conversion 

Albany/FELIX (C++) 
velocity solve 

Albany 
FO (FE) 

code 

exe 

dycore 
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• MPAS-Albany uses same interface used to link MPAS with LifeV and PHG, 
which converts MPAS Voronoi grid to a Delaunay triangulation and builds 
extruded tetrahedral mesh. 

 
 

• MPAS Makefile scripts uses variable EXTERNAL_LIBS to link Albany libraries 
(libraries are still set manually). 

 

• MPAS passes to Albany info about geometry, temperature, sliding 
coefficient, floating condition; Albany returns the velocity field. 

 

• Time-stepping, temperature solve (work in progress) done in MPAS. 

LifeV (C++) 
velocity solve 

PHG (C) 
velocity solve 

M. Perego (SNL) and  

M. Hoffman (LANL) 

Delaunay 
Triangulation 

Voronoi 
Tessalation 



Structured Tetrahedral Grid Results 
(MPAS-Albany Interface) 

Constant 𝛽, T 

Variable 𝛽, T 

Greenland (Jakovshavn close-up) Antarctica (10 km) 
 

𝛽 =  
105 [Land]

10−5 [Floating]
 

Temperature = Linear 
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Courtesy of  

M. Perego (SNL) 



Unstructured Delaunay Triangle  
Grid Results  
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• Step 1: determine geometry boundaries and possible holes (MATLAB). 
 

• Step 2: generate uniform triangular mesh and refine based on gradient of measured surface velocity 
(Triangle – a 2D meshing software). 

 

• Step 3: obtain 3D mesh by extruding the 2D mesh in the vertical direction as prism, then splitting 
each prism into 3 tetrahedra (Albany).  

Courtesy of M. 

Perego (SNL) 

Mesh Details 
Min ℎ: 4 km 

Max ℎ: 15 km 
32K nodes 

|computed surface velocity| [m/yr] |reference surface velocity| [m/yr] 



Transient Simulations: MPAS-Albany 
Forward Run (5 km Greenland) 

Elevation change [m] Surface velocity [km/yr] 

𝑡 =  0  𝑡 =  13 
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M. Perego (SNL) and  

M. Hoffman (LANL) 

• Euler upwind scheme for time-integration. 
• Preliminary (proof-of-concept) result up to 𝑡 =  13 years (CFL violated with 

Δ𝑡 =  0.1 years). 

Status: time-stepping works with small Δ𝑡;  
temperature solve (in MPAS) is work in progress. 



Greenland Weak and Strong 
Scalability Study (on Hopper)   

• Weak scaling (with changing data, ~37K 
dofs/core) for 9/25/13 4 km→1 km GIS data 
sets with no-slip at bedrock. 

256 1024 

213 sec 

821 sec 

# cores 

• Strong scaling study above for 1 km with no-slip at 
bedrock (37M dofs): 3.86x speedup with 4x cores. 
 

• Only 213 seconds on 1024 cores, including homotopy 
(for diagnostic solve; later time steps should be ~40 
seconds!) 

Weak Scalability Strong Scalability 

Joint work with R. Tuminaro, A. 

Salinger (SNL); P. Worley (ORNL)  
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# cores 

64 cores 
2.4M dofs  
(4 km GIS) 

1024 cores 
37M dofs  
(1 km GIS) 



Greenland Mesh Convergence &  
Controlled Scalability Study  

How?  
• Fix geometry and data (8 km GIS hex grid with variable 𝛽, temperature fields – top middle). 
 

• Refine mesh/data in 2D uniformly (top right) → partition 2D mesh for parallel run (top left). 

  

• Extrude in 𝑧-dimension using 𝑁 vertical layers to get 3D mesh → can study refinement as a 
function of # of vertical layers.  

 

• Repeat. 

Why? 
• Verify order of convergence. 
 

•  Get an idea of the discretization 
error. 

 

• Study refinement in vertical levels. 
 

• Identify best preconditioners. 
 

• Perform controlled scalability study. 
No refinement 1 level refinement 
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Joint work with A. Salinger, 

M. Perego, R. Tuminaro (SNL) 
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Greenland Mesh  
Convergence Study 

# vertical 
layers/# cores 

# dofs Time/Iter 
(sec) 

Solution  
Average 

5/128 21.0M 0.1312 3.979 

10/256 38.5M 0.1257 4.239 

20/512 73.5M 0.1235 4.354 

40/1024 143M 0.1217 4.407 

80/2048 283M 0.1238 4.432 

• Left: vertical refinement for 1km GIS problem.  
 

• QOI (solution average) does change with #  
      vertical layers.  
 

• Fairly good scalability in linear solve time with 
respect to # of vertical layers. 

Joint work with A. Salinger, 

M. Perego, R. Tuminaro (SNL) 

• Convergence metric: 𝐿2 relative error in 
solution at top surface and volume. 

 

• Reference solution: 500 m GIS with 80 
vertical layers (1.12B dofs). 

1 km GIS, 
40 vertical 

layers 
143M dofs 

8 km GIS, 
5 vertical 

layers 
3.34K dofs 

• Theoretical Convergence Rate: 2.00 
 

• Actual Convergence Rate: 1.38 
 

…discrepancy likely due to data fields 
not being entirely consistent b/w 

reference and computed solutions. 



Greenland Controlled Weak  
Scalability Study 

No refinement 1 level refinement 
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Joint work with A. Salinger, 

M. Perego, R. Tuminaro 

(SNL) 

16,384 cores 
1.12B dofs!  
(500 m GIS) 

4 cores 
334K dofs  
(8 km GIS) 

• Weak scaling study with one data 
set on coarse mesh, interpolated 
onto finer meshes. 

 

• ~70-80K dofs/core. 
 

• Changed from GMRES to CG 
iterative method (⇒ faster 
convergence). 

 

• ILU preconditioner works well so 
far. 

 

• Good scalability in: FE 
integration, preconditioner 
generation, time/iteration, # 
nonlinear solves. 

 
 

• Scalability needs to be improved 
in: # linear iterations. 
 

# cores 



Summary and Future Work 

Summary:  
 

• Albany/FELIX first-order Stokes dycore can be run on Greenland/Antarctica problems 
discretized by several kinds of meshes and is nearly ready for science. 

 

• The Albany/FELIX dycore has been hooked up to the CISM and MPAS codes.  
 

• Convergence, scalability and robustness of the Albany/FELIX code has been verified. 
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Verification, science simulations, scalability, robustness, 
UQ, advanced analysis: all attained in ~1.5 FTE of effort! 

Ongoing/future work: 
 

• Dynamic simulations of ice evolution.  
 

• Inversion/calibration → next talk (M. Perego)! 
 

• Running on hybrid/new architecture machines. 
 

• Journal article on Albany/FELIX (I. Kalashnikova, A. Salinger, M. Perego, R. Tuminaro, 
S. Price, M. Hoffman).  
 

• Coupling to community earth system model (CESM). 
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Appendix: Convergence Plots for 
Refinement in Vertical Direction 

22/20 

• Theoretical Convergence Rate: 2.00 
 

• Actual Convergence Rate: 2.14 

• Convergence with vertical refinement studied for 1km GIS problem.  
 

• Convergence metric: 𝐿2 error of solution over ice volume. 
 

• Reference solution: 1 km GIS with 40 vertical layers (143M dofs). 

Joint work with A. Salinger, 

M. Perego, R. Tuminaro (SNL) 



Appendix: Antarctica Unstructured Delaney 
Triangle Mesh + Variable 𝛽 Field Result 
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|computed surface velocity| [m/yr] |reference surface velocity| [m/yr] 

Mesh Details 
Min ℎ: 2 km 

Max ℎ: 15 km 
3.3M dofs  

• Antarctica simulation on variable resolution unstructured Delaunay triangle mesh 
computed in Albany/FELIX. 

 

• Albany/FELIX converged out-of-the-box.  
 

• Variable 𝛽 field provided by D. Martin. 
 

• Unrealistic temperature field → computed surface velocity (top left) does not agree 
well with reference surface velocity (top right).  

Courtesy of M. 

Perego (SNL); D. 

Martin (LBNL) 


